Supporting Information for

Asymmetric Synthesis of -Amino Acids by Addition of Chiral Enolates to N-Acyloxyiminium Ions and Application for Synthesis of Optically Active 5-Substituted 8-Methylindolizidines

Toru Kawakami, Hiroaki Ohtake, Hiroaki Arakawa, Takahiro Okachi, Yasushi Imada, and Shun-Ichi Murahashi,*

Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama 1-3, Toyonaka, Osaka 560-8531, Japan

Materials. *N*-Benzylidenebenzylamine *N*-oxide (**9**) and 1-pyrroline *N*-oxide (**16**) were prepared by Na₂WO₄-¹ and SeO₂-catalyzed² oxidations of dibenzylamine and pyrrolidine, respectively. (4R,5S)-4-Methyl-5-phenyl-oxazolidinone was prepared according to the literature proceure.³

Addition of Titanium Enolate 11 to Nitrone 9. A solution of titanium enolate 11 was prepared by addition of propiophenone (0.239 mL, 1.8 mmol) to a solution of TiCl₄ (0.19 mL, 1.7 mmol) and *i*-Pr₂NEt (0.376 mL, 2.16 mmol) in CH₂Cl₂ (3.0 mL) under argon at -78 °C followed by stirring at 0 °C for 0.5 h.⁴ To the solution of titanium enolate 11 was added a solution of *N*-benzoyloxy-*N*-benzylidenebenzylammonium chloride (10), which was prepared by the reaction of nitrone 9 (317 mg, 1.5 mmol) and benzoyl chloride (0.191 mL, 1.65 mmol) at -78 °C followed by stirring for 0.5 h. The reaction mixture was stirred at -78 °C for 0.5 h and allowed to warm to room teprerature. To the reaction mixture were added hexane, sat. NaHCO₃, and 10 *M* KF, and the mixture was stirred at room temperature for 0.5 h. The mixture was filtered through Celite, and the cake was washed with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ and brine, and dried (MgSO₄) Evaporation of the filtrate followed by column chromatography on SiO₂ gave 3-(*N*-benzoyloxybenzylamino)-2-methyl-3-phenylpropiophenone (12) (532 mg, 79%) as an oil. The ratio of two diastereomers was determined by ¹H NMR analysis to be (2*R**,3*R**)-12/(2*R**,3*S**)-12 =

64:36. **12**: IR (neat) 1744 (OCO), 1682 (CO), 1451 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, mixture of diastereomers (64:36)) 0.79 (d, J = 7.1 Hz, 3 H x 0.36, CHCH₃ of ($2R^*,3S^*$)-**12**), 1.61(d, J = 6.6 Hz, 3 H x 0.64, CHCH₃ of ($2R^*,3R^*$)-**12**), 3.84 (d, J = 13.7 Hz, 1 H x 0.64, CH₂Ph of ($2R^*,3R^*$)-**12**), 3.92 (d, J = 12.4 Hz, 1 H x 0.36, CH₂Ph of ($2R^*,3S^*$)-**12**), 4.13 (d, J = 13.7 Hz, 1 H x 0.64, CH₂Ph of ($2R^*,3R^*$)-**12**), 4.16 (d, J = 12.7 Hz, 1 H x 0.36, CH₂Ph of ($2R^*,3S^*$)-**12**), 4.25 (dq, J = 7.1 and 9.8 Hz, 1 H x 0.36, CHCH₃ of ($2R^*,3S^*$)-**12**), 4.29 (dq, J = 6.6 and 10.5 Hz, 1 H x 0.64, CHCH₃ of ($2R^*,3R^*$)-**12**), 4.39 (d, J = 10.5 Hz, 1 H x 0.64, CHN of ($2R^*,3R^*$)-**12**), 4.74 (d, J = 9.8 Hz, 1 H x 0.36, CHN of ($2R^*,3S^*$)-**12**), 7.05-8.05 (m, 20 H, Ar); ¹³C NMR (CDCl₃, 68 MHz, mixture of diastereomers (64:36)) 16.6 and 17.3, 42.9 and 43.7, 59.9 and 61.0, 69.7 and 77.2, 127.3, 127.7, 127.9, 128.0, 128.1, 128.2, 128.3, 128.39, 128.4, 128.6, 128.9, 129.0, 129.17, 129.24, 129.3, 129.4, 129.7, 130.1, 132.4, 132.6, 132.8, 133.1, 135.9, 136.0, 136.1, 136.3, 164.9 (OCO), 202.0 and 202.1 (CO); HRMS (FAB), *m/e* calcd for C₃₀H₂₈NO₃ 450.2069, found 450.2087.

Addition of Titanium Enolate 13a to Nitrone 9. To a mixture of Ti(O-*i*-Pr)₄ (0.178 mL, 0.60 mmol) and 4A molecular sieves (300 mg) in CH₂Cl₂ (6.0 mL), was added TiCl₄ (0.198 mL, 1.80 mmol) at -78 °C under argon, and the solution was allowed to warm to room temperature until it became a clear solution (ca. 10 min). (4R,5S)-4-Methyl-5-phenyl-3propanoyloxazolidinone (488 mg, 2.09 mmol) and *i*-Pr₂NEt (0.437 mL, 2.51 mmol) were added at -78 °C, and the mixture was stirred at 0 °C for 0.5 h. To the solution of titanium enolate 13a, was added a solution of *N*-acyloxyiminium ion 10, which was prepared by the reaction of nitrone 9 (587 mg, 2.78 mmol) and benzoyl chloride (0.322 mL, 2.78 mmol) at -78 $^{\circ}$ C followed by stirring for 0.5 h. The reaction mixture was stirred at -78 $^{\circ}$ C for 1 h, and allowed to warm to room teprerature. To the reaction mixture were added hexane, sat. NaHCO₃, and 10 *M* KF, and the mixture was stirred at room temperature for 0.5 h. The mixture was filtered through Celite, and the cake was washed with EtOAc. The organic layer was separated, washed with sat. NaHCO3 and brine, and dried (MgSO4). Filtration and removal of solvent gave (4*R*,5*S*)-3-[3-(*N*-benzoyloxy-*N*-benzylamino)-2-methyl-3phenylpropanoyl]-4-methyl-5-phenyl-2-oxazolidinone (14) (745 mg, 65%), of which

diastereomeric ratio were determined by ¹H NMR analysis to be (2'S,3'S)-14/(2'S,3'R)-14 =85:15. Column chromatography on SiO₂ (5–10% EtOAc in hexane) afforded pure (2'S,3'S)-**14** (574 mg, 50%) and (2'S,3'R)-**14** (108 mg, 9%). (2'R,3'R)-**14**: $[]^{24}D + 73.4^{\circ}$ (c 1.02, CHCl₃); IR (KBr) 1780, 1744, 1699, 1454, 1383, 1368, 1342, 1256, 1240, 1196, 1055, 1024, 701 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 35 °C) 0.08 (d, J = 6.6 Hz, 3 H, CH₃CHN), 1.58 (dJ = 6.6 Hz, 3 H, CH₃CHCO), 3.82 (d, J = 12.7 Hz, 1 H, CHHPh), 4.18 (d, J = 11.2 Hz, 1 H, CHPh), 4.20 (d, J = 12.7 Hz, 1 H, CHHPh), 4.50 (dq, J = 7.3 and 6.6 Hz, 1 H, NCHCH₃), 4.94 (dq, J = 11.0 and 6.6 Hz, 1 H, COCHCH₃), 5.48 (d, J = 7.3 Hz, 1 H, OCH), 7.13–7.60 (m, 18 H, Ph), 8.00–8.04 (m, 2 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 35 °C) 13.2, 16.2, 39.9, 54.2, 59.5, 70.3, 78.3, 125.6, 127.7, 128.0, 128.1, 128.4, 128.5, 128.6, 128.6, 129.3, 129.4, 129.5, 130.6, 133.0, 133.3, 135.8, 136.0, 152.5 (CH₂CON), 165.1 (NCOO), 175.2 (OCO); Anal. Calcd for C₃₄H₃₂N₂O₅: C, 74.42; H, 5.88 N, 5.11. Found: C, 74.70; H, 6.09; N, 5.09. (2'S,3'R)-14: mp 140.5–142.0 °C (MeOH); $[]^{24}$ D +20.2° (c 1.02, CHCl₃); IR (KBr) 1778, 1750, 1698, 1454, 1387, 1370, 1346, 1260, 1234, 1196, 1057, 1024, 700 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 35 °C) 0.90 (dI = 7.1 Hz, 3 H, CH₃CHCO), 1.20 (d, J = 6.6 Hz, CH₃CHN), 3.84 (d, J = 12.9 Hz, 1 H, NHCHPh), 4.00 (d, J = 13.2 Hz, 1 H, NHCHPh), 4.46 (d, J = 11.2 Hz, 1 H, NCHPh), 4.78–4.94 (m, 2 H, NCHCHO, COCHCH₃), 5.63 (d, *J* = 7.8 Hz, 1 H, OCHPh), 7.16–7.58 (m, 18 H, Ph), 7.88–7.93 (m, 2 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 35 °C) 14.4, 15.9, 39.0, 55.2, 60.4, 71.8, 78.7, 126.1, 127.5, 128.0, 128.2, 128.3, 128.6, 128.6, 129.3, 129.4, 129.7, 130.9, 132.7, 133.9, 134.2, 135.9, 153.0 (CH₂CON), 165.0 (NCOO), 175.8 (OCO); Anal. Calcd for C₃₄H₃₂N₂O₅: C, 74.42; H, 5.88; N, 5.11. found: C, 74.60; H, 5.95; N, 5.07.

(2R, 3R)-3-(Benzyloxycarbonylamino)-2-methyl-3-phenylpropanoic Acid ((-)-15): mp 169.0–171.0 °C (CHCl₃); []³¹_D –36.7° (*c* 1.10, MeOH) ([]³¹_D +36.1° (*c* 0.97, MeOH) for (+)-15); IR (Nujol) 3358 (NH), 1692, 1532, 1287, 1258, 1019 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 55 °C) 1.16 (d,*J* = 7.1 Hz, 3 H, CH₃CHCO), 2.96 (quint, *J* = 7.1 Hz, 1 H, CHCO), 5.01–5.13 (m, 3 H, CHPh and CH₂Ph), 5.67 (br s, 2 H, CO₂H and NH), 7.20–7.36 (m, 10 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 55 °C) 13.1, 44.8, 57.2, 67.1, 126.9, 127.8, 128.0, 128.1, 128.5, 128.6, 136.4, 139.6, 156.1, 178.0; ¹H NMR (CD₃OD, 270 MHz, 35 °C) 1.21 (d, J = 7.1 Hz, 3 H, CH_3), 2.88 (dq, J = 8.8 and 7.1 Hz, 1 H, CHMe), 4.90 (d, J = 8.8 Hz, CHN), 5.01 (d, J = 12.4 Hz, 1 H, CHHPh), 5.08 (d, J = 12.4 Hz, 1 H, CHHPh), 7.12–7.38 (m, 10 H, Ph); ¹³C NMR (CD₃OD, 68 MHz, 35 °C)

15.4, 47.6, 59.5, 68.4, 129.0, 129.2, 129.5, 129.7, 130.1, 130.2, 139.1, 143.3, 159. 8.4;Anal. Calcd for C₁₈H₁₉NO₄: C, 69.00; H, 6.11; N, 4.47. Found: C, 68.69; H, 6.09; N, 4.45.

Reaction of Titanium Enolate 13b with Nitrone 16. To a mixture of (4*R*.5*S*)-3-propanoyl-4-methyl-5-phenyl-2-oxazolidinone (515 mg, 2.20 mmol) and 4A molecular sieves (300 mg) in CH₂Cl₂ (5 mL) were added TiCl₄ (0.277 mL, 2.53 mmol) and *i*-Pr₂NEt (0.460 mL, 2.64 mmol) at -78 °C under argon. The mixture was stirred at 0 °C for 0.5 h and cooled to -78 °C, and a mixture of benzoic acid (322 mg, 2.64 mmol), *i*-Pr₂NEt (0.479 mL, 2.75 mmol), and 4A molecular sieves (200 mg) in CH₂Cl₂ (3.0 mL) was added to the cooled mixture. After the mixture was stirred at 0 °C for 0.5 h, was added a solution of Nacyloxyiminium ion 17, which was prepared from nitrone 16 (639 mg, 3.00 mmol) and (\pm) -Oacetylmandelyl chloride (0.348 mL, 3.00 mmol), dropwise at -78 °C under argon. The mixture was stirred at the same temperature for 1 h. To the reaction mixture were added hexane, sat. NaHCO₃, and 10 M KF, and the mixture was stirred at room temperature for 0.5 h. The mixture was filtered through Celite and the cake was washed with EtOAc. The organic layer was separated, washed with sat. NaHCO₃ and brine, and dried (MgSO₄). Filtration and removal of the solvent gave a mixture of $(4R,5S)-3-\{(2S)-2-\{(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-N-[(2R)-2-(2S)-2-(2S)-N-[(2R)-2-(2S)-2-(2S)-N-[(2R)-2-(2S)-2-(2S)-N-[(2R)-2-(2S)-2-(2S)-2-(2S)-N-[(2R)-2-(2S)$ acetoxyphenylacetoxy]pyrrolidin-2-yl}propanoyl}-4-methyl-5-phenyl-2-oxazolidinone $((2^{\circ}S, 2^{\circ}S, 2^{\circ}R)-18), (2^{\circ}S, 2^{\circ}S, 2^{\circ}S)-18, (2^{\circ}R, 2^{\circ}S, 2^{\circ}R)-18, \text{ and } (2^{\circ}R, 2^{\circ}S, 2^{\circ}S)-18$ (84%), of which diastereomeric ratio were determined by ¹H NMR analysis to be $(2^{\circ}S, 2^{\circ}S, 2^{\circ}R) - 18/(2^{\circ}S, 2^{\circ}S, 2^{\circ}S) - 18/(2^{\circ}R, 2^{\circ}S, 2^{\circ}R) - 18/(2^{\circ}R, 2^{\circ}S, 2^{\circ}S) - 18 = 49:49:1:1.$ (2'S,2"S,2""R)-18: IR (KBr) 2976, 1784, 1761, 1703, 1456, 1346, 1228, 1149, 766, 704 cm^{-1} ; ¹H NMR (CDCl₃, 270 MHz) 0.85 (d, J = 6.7 Hz, 3 H, CH₃CHN), 1.15 (d, J = 6.8Hz, 3 H, CH₃CHCO), 1.44–2.21 (m, 4 H, CH₂CH₂), 2.18 (s, 3 H, CH₃CO), 3.06 (ddd, J = 7.3, 7.5 and 13.0 Hz, 1 H, CHHN), 3.14–3.30 (m, 1 H, CHHN), 3.54 (q, J = 8.4 Hz, 1 H,

NCHCH₂), 4.01 (br, 1 H, CH₃CHCO), 4.73 (dq, *J* = 7.0 and 6.7 Hz, 1 H, CHCHPh), 5.62

(d, J = 7.6 Hz, 1 H, PhCHCH), 5.93 (s, 1 H, CHO₂CCH₃), 7.02–7.54 (m, 10 H, Ph); ¹³C NMR (CDCl₃, 68 MHz) 14.3, 20.7, 22.2, 25.8, 39.2, 54.9, 57.7, 70.8, 73.6, 78.8, 125.9, 127.5, 128.5, 128.6, 128.7, 129.0, 133.6, 133.8, 152.7(CH₂CON), 166.9 (NCOO), 170.0 (CH₃CO₂), 174.9 (OCO); HRMS (FAB) Calcd for C₂₇H₃₁N₂O₇ (M+H⁺) 495.2131, found 495.2136. (2'*S*,2"*S*,2""*S*)-**18**: IR (Nujol) 1780, 1745, 1701, 1350, 1237, 1042, 763, 728, 700 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) 0.84 (d, J = 6.6 Hz, 3 H, CH₃CHN), 1.19 (d, J = 6.8 Hz, 3 H, CH₃CHCO), 1.48–2.04 (m, 4 H, CH₂CH₂), 2.15 (s, 3 H, CH₃CO), 2.89 (ddd, J = 6.6, 6.8 and 12.7 Hz, 1 H, CHHN), 3.28 (ddd, J = 6.4, 7.0 and 12.2 Hz, 1 H, CHHN), 3.67 (q, J = 8.2 Hz, 1 H, NCHCH₂), 3.96 (dq, J = 8.2 and 7.0 Hz, 1 H, CH₃CHCO), 4.75 (dq, J = 6.8 and 6.6 Hz, 1 H, CHCHPh), 5.61 (d, J = 6.8 Hz, 1 H, PhCHCH), 5.91 (s, 1 H, CHO₂CCH₃), 7.20–7.54 (m, 10 H, Ph); ¹³C NMR (CDCl₃, 68 MHz) 14.3, 20.6, 22.1, 25.3, 39.7, 54.9, 57.1, 70.4, 73.8, 78.8, 125.8, 127.7, 128.5, 128.6, 128.7, 129.1, 133.6, 133.9, 152.6(CH₂CON), 166.8 (NCOO), 170.0 (CH₃CO), 174.8 (OCO); HRMS (FAB) Calcd for C₂₇H₃₁N₂O₇ (M+H⁺) 495.2131, found 495.2119.

Preparation (4R,5S)-3-[(2S)-2-{(2S)-N-Benzyloxycarbonylof pyrrolidin-2-yl}propanoyl]-4-methyl-5-phenyl-2-oxazolidinone (22). Α mimxture of 18 (4.35 g, 8.8 mmol) and zinc powder (11.7 g, 176 mmol) in MeOH-4 M HCl (3:2, 50 mL) was stirred at 60 °C for 0.5 h. Cooling to room temperature, filtration, and evaporation gave an oil. To a solution of the oil in THF—water (1:1, 45 mL) were added KHCO₃ (2.00 g, 14.5 mmol) to adjust pH to 8 and benzyl chloroformate (2.51 mL, 17.6 mmol), and the mixture was stirred at room temperature for 2 h. The reaction mixture was extracted with EtOAc, washed with brine, and dried (MgSO₄). Evaporation of the filtrate and purification by column chromatography on SiO₂ (15-20% EtOAc in hexane) afforded (4R,5S,2'S,2''S)-22 (3.40 g, 7.78 mmol, 88%) as a colorless oil: []²⁴D +21.1° (c 1.01, CH₂Cl₂); IR (neat) 1779, 1705, 1499, 1456, 1410, 1200, 1148, 1030, 988, 959, 767, 736, 699 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 50 °C) 0.81 (d, J = 6.6 Hz, 3 H, CH₃), 1.15 (br s, 3 H, CH₃), 1.74–2.08 (m, 4 H, CH₂CH₂), 3.28–3.70 (m, 2 H), 4.20–4.39 (m, 2 H), 4.77 (quint, J = 6.6 Hz, 1 H, CH₃CHCO), 5.08 (br, 2 H, CH₂Ph), 5.61 (d, J = 7.4 Hz, 1 H, PhCHO) 7.12–7.54 (m, 10 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 50 °C) 14.4, 23.8, 28.2,

40.5, 47.2, 47.3, 54.9, 66.7, 77.2, 78.8, 125.8, 127.8, 127.9, 128.4, 128.6, 128.7, 133.7, 137.1, 152.2, 155.1, 174.9; HRMS(FAB) calcd for C₂₅H₂₉N₂O₅ (M+H⁺) 437.2076, found 437.2075.

(2S)-2-{(2S)-N-Benzyloxycarbonylpyrrolidin-2-**Preparation** of yl}propanol (19). To a solution of -amino acid derivative 22 (273 mg, 0.63 mmol) in THF—H₂O (2:1, 10.5 mL), NaBH₄ (95 mg, 2.5 mmol) was added at 0 °C, and the mixture was stirred at 5 °C for 15 h. To the mixture was added 1.6 M aqueous NaH₂PO₄ dropwise. After removal of THF, the mixture was extracted with EtOAc, washed with brine, and dried (MgSO₄). After filtration and removal of the solvent, the residue was purified by column chromatography on SiO₂ (30–50% EtOAc in hexane), affording **19** (146 mg, 88%) as a colorless oil along with (4R,5S)-4-methyl-5-phenyl-2-oxazolidinone (97 mg, 82%). 19: []²³_D -37.3° (*c* 1.43, MeOH); IR (neat) 3424 (OH), 2969, 2880, 1678 (NCOO), 1455, 1416, 1358, 1339, 1101, 769 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 50 °C) 1.03 (d, J = 7.0Hz, 3 H, CH₃), 1.49 (br, 1 H, CHCH₃), 1.75–1.98 (m, 4 H, (CH₂)₂), 3.24–3.47 (m, 2 H), 3.47–3.71 (m, 2 H), 3.72–3.95 (m, 2 H), 5.14 (d, J = 12.0 Hz, 1 H, HCHPh), 5.17 (d, J = 12.0 Hz, 1 H, HCHPh), 7.28–7.38 (m, 5 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 50 °C) 14.7. 23.6, 28.6, 39.0, 46.3, 59.6, 64.0, 67.2, 127.8, 128.0, 128.5, 136.7, 157.0; HRMS(EI) calcd for C₁₅H₂₁NO₃ (M⁺) 263.1521, found 263.1494.

Preparation of (2S)-N-Benzyloxycarbonyl-2-{(2S)-1-bromo-2propyl}pyrrolidine (23). To a solution of alcohol **19** (397 mg, 1.50 mmol) in dry THF (8 mL), were added PPh₃ (590 mg, 2.25 mmol) and CBr₄ (746 mg, 2.25 mmol) at 0 °C, and the mixture was warmed up to room temperature. The mixture was stirred for 10 min then quenched with sat. aq. NaHCO₃. After extraction with EtOAc, the extracts were washed with brine and dried (MgSO₄). After filtration and removal of solvent, the resulting oil was purified by column chromatography on SiO₂ (15% EtOAc in hexane) to afford **23** (471 mg, 96%) as a colorless oil: [$]^{25}D^{-39.4^{\circ}}$ (*c* 1.26, CHCl₃); IR (neat) 2970, 1699, 1499, 1456, 1410, 1356, 1103, 770, 698 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 55 °C) 0.97 (d, *J* = 6.6 Hz, 3 H, CH₃), 1.73–1.98 (m, 4 H, (-CH₂-)₂), 2.38 (septet, *J* = 6.6 Hz, 1 H, CH₃CH), 3.12–3,45 (m, 3 H), 3.53–3.70 (m, 1 H), 3.93–4.04 (m, 1 H), 5.11 (d, *J* = 12.5 Hz, 1 H of CH₂Ph), 5.15 (d, *J* = 12.5 Hz, C*H*HPh), 7.15–7.42 (m, 5 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 55 °C) 14.4, 24.0, 26.9, 37.3, 38.8, 46.9, 60.8, 66.9, 127.8, 127.9, 128.5, 137.0, 155.4; HRMS (FAB) calcd for C₁₅H₂₀NO₂Br (M+H⁺) 325.0677, found 325.0707.

Preparation of $(2R)-2-\{(2S)-N-$ Diethyl benzyloxycarbonylpyrrolidin–2–yl}propylmalonate (24). A solution of diethyl malonate (8.95 mL, 59 mmol) in of DME (20 mL) was added to the suspension of NaH (53.6 mmol, secured from 2.14 g of 60% mineral oil dispersion through hexane washing) in DME (20 mL). A solution of 23 (1.75 g, 5.36 mmol) in DME (20 mL) was added to the solition of sodiomalonate over a period of 20 min, and the mixture was stirred at 60 °C for 20 h. Ethereal acetic acid was added to neutralize the excess sodiomalonate, and the product was extracted with EtOAc and washed with brine. The extracts were dried (MgSO₄) and evaporated. The resulting oil was purified by column chromatography on SiO₂ (10–20% EtOAc in hexane), to give 24 (1.87 g, 86%) as a colorless oil: $[]^{23}D - 13.6^{\circ}$ (c 1.71, CHCl₃); IR (neat) 2995, 1751, 1732, 1701, 1410, 1030, 769, 698 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 50 °C) 0.81 (d, $J = 6.8 \text{ Hz}, 3 \text{ H}, CH_3$, 1.16–1.29 (m, 6 H, CH₂CH₃), 1.62–2.29 (m, 7 H), 3.23–3.34 (m, 1 H), 3.39 (br t, J = 6.4 Hz, 1 H, $CH(CO_2)_2$), 3.61 (br, 1 H), 3.86 (br q, J = 5.0 Hz, 1 H, CHN), 4.02–4.27 (m, 4 H, CH₂CH₃), 5.12 (s, 2 H, CH₂Ph), 7.26–7.37 (m, 5 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 50 °C) 13.8, 14.0, 24.1, 26.2, 32.7, 33.5, 39.9, 47.3, 50.5, 61.2, 61.3, 62.7, 66.6, 127.7, 128.4, 137.2, 155.2, 169.3, 169.6; HRMS (FAB) calcd for C₂₂H₃₂NO₆ (M+H⁺) 406.2230, found 406.2196.

Preparation of Ethyl (4*R*)-4-{(2*S*)-*N*-Benzyloxycarbonylpyrrolidin-2yl}pentanoate (20). A mixture of malonate 24 (1.85 g, 4.6 mmol), NaCl (539 mg, 9.22 mmol), and water (0.33 mL, 18.4 mmol) in DMSO (25 mL) was stirred under argon at 170 °C for 10 h, and then water was added. After extraction with EtOAc—Et₂O (3:1), the extracts were washed with brine and dried (MgSO₄). After filtration and the removal of the solvent, the resulting oil was purified by column chromatography on SiO₂ (15% EtOAc in hexane), to afford 20 (1.22 g, 80%) as a pale yellow oil: [$]^{25}D$ –26.9° (*c* 1.05, CHCl₃); IR (neat) 2973, 1732, 1703, 1456, 1412, 1183, 1100, 1028, 770, 700 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz, 50 °C) 0.79 (d, *J* = 6.8 Hz, 3 H, CH₃), 1.23 (t, *J* = 7.1 Hz, 3 H, CH₂CH₃), 1.34–1.52 (m, 1 H), 1.57–1.93 (m, 5 H), 1.93–2.49 (m, 3 H), 3.23–3.36 (m, 1 H), 3.62 (br, 1 H), 3.79–3.91 (m, 1 H), 4.10 (q, J = 7.1 Hz, 2 H, CH_2CH_3), 5.10 (d, J = 12.5 Hz, CHHPh), 5.15 (d, J = 12.5 Hz, CHHPh), 7.24–7.39 (m, 5 H, Ph); ¹³C NMR (CDCl₃, 68 MHz, 50 °C) 13.7, 14.2, 24.2, 25.9, 29.0, 32.6, 34.7, 47.2, 60.2, 61.5, 66.7, 127.7, 127.8, 128.4, 137.2, 155.2, 173.6; HRMS (FAB) calcd for C₁₉H₂₈NO₄ (M+H⁺) 334.2019, found 334.2000.

Preparation of (2S)-1-Benzyloxycarbonyl-2-[(2R)-5,5-dimethoxypent-2yl]pyrrolidine (25). To a solution of ester 20 (157.2 mg, 0.47 mmol) in CH₂Cl₂ (15 mL), was added dropwise a 1.0 M hexane solution of DIBALH (0.54 mL, 0.54 mmol) at -78 °C. The mixture was stirred for 30 min at the same temperature, then were added Na₂SO₄•10H₂O and hexane. After the mixture was allowed to warm to room temperature, evaporation of the filtrate gave crude aldehyde. A solution of the aldehyde and catalytic amount of TsOH•H₂O in MeOH (12 mL) was stirred at reflux for 3 h. After addition of sat. NaHCO₃, the solution was extracted with ether, and the combined extracts were washed with brine and dried (MgSO₄). After filtration and removal of the solvent, the crude acetal was purified by column chromatography on SiO₂ (20% EtOAc in hexane), to afford acetal 25 (101 mg, 64%) as a colorless oil: []²²D –26.7° (*c* 1.39, CHCl3); IR (neat) 2955, 1699, 1408, 1190, 1100, 698 cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 50 °C) 0.78 (d, J = 6.8 Hz, 3 H, CH₃), 1.05–2.30 (m, 9 H), 3.29 (s, 6 H, OCH₃), 3.15–3.38 (m, 1 H), 3.62 (br, 1 H), 3.86 (m, 1 H), 4.30 (br, 1 H), 5.10 (d, J = 12.5 Hz, 1 H, HCHPh), 5.15 (d, J = 12.5 Hz, 1 H, HCHPh), 7.26–7.38 (m, 5 H, Ph); ¹³C NMR (68 MHz, CDCl₃, 50 °C) 13.8, 24.2, 25.7, 28.7, 30.7, 34.5, 47.3, 52.7, 61.8, 66.5, 104.8, 127.7, 128.0, 128.4, 137.2, 155.2.

Preparation of (2S)-2-[(2R)-5,5-Dimethoxypent-2-yl]pyrrolidine $(21).^5$ A mixture of acetal 25 (490 mg, 1.46 mmol) and 10% Pd on carbon (160 mg) in MeOH (8 mL) was stirred under H₂ (1 atm) at room temperature for 90 min. Filtration and removal of the solvent gave 21 (253 mg, 86%): [$]^{23}D + 7.8^{\circ}$ (*c* 1.12 CH₂Cl₂), (lit.⁵ [$]D + 7.4^{\circ}$ (*c* 1.1 CH₂Cl₂)); IR (neat) 3347, 2957, 1460, 1383, 1192, 1127, 1059 cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 35 °C) 0.88 (d, *J* = 6.8 Hz, 3 H, CH₃), 1.08-1-88 (m, 10 H), 2.74 (m, 1 H), 2.82 (m, 1 H), 2.99 (m, 1 H), 3.31 (s, 6 H, OCH₃), 4.33 (t, *J* = 5.5 Hz, 1 H, CH(OCH₃)₂); ¹³C NMR (68 MHz, CDCl₃, 50 °C) 16.2, 25.5, 29.3, 29.4, 30.1, 38.5, 46.8, 52.7, 64.4, 105.1; HRMS(EI) calcd for C₁₁H₂₃NO₂ (M⁺) 201.1729, found 201.1735.

Preparation of (*5R*,*8R*,*8aR*)-(–)-*5*-**Cyano-8-methylindolizidine (7).** To a solution of amino acetal **21** (240 mg, 1.19 mmol) in CH₂Cl₂—H₂O (15 mL each), KCN (932 mg, 14.3 mmol) was added. The pH value of the solution was adjusted to 3 with conc. HCl, and the mixture was stirred for 10 h. After the solution was made alkaline with 2 *M* NaOH, it was extraction with CH₂Cl₂. The combined organic layers were dried (MgSO₄), filtered, and evaporated to afford (–)-7 as an oil (191 mg, containing 7% of a diastereomer, 98%): [$]^{24}$ D –25.8° (*c* 1.64, CH₂Cl₂), (lit.⁵ []D –18.8° (*c* 1, CH₂Cl₂)); IR (neat) 2953, 2224, 1460, 1167 cm⁻¹; ¹H NMR (270 MHz, CDCl₃, 50 °C) 0.92 (d, *J* = 6.5 Hz, 3 H, CH₃), 1.20–1.47 (m, 3 H), 1.61–2.06 (m, 7 H), 2.49 (q, *J* = 8.8 Hz, 1 H, C₃-*H*), 2.95 (dt, *J* = 3.0 and 8.5 Hz, C₃-*H*), 4.03 (t, *J* = 3.4 Hz, 1 H, C₅-*H*); ¹³C NMR (68 MHz, CDCl₃, 50 °C) 18.3, 20.3, 28.7, 28.9, 29.4, 36.7, 51.3, 51.4, 64.8, 116.6; HRMS (EI) calcd for C₁₀H₁₆N₂ (M⁺) 164.1313, found 164.1288.

References

(1) Murahashi, S.-I.; Shiota, T.; Imada, Y. Org. Synth. 1992, 70, 265–271.

(2) Murahashi, S.-I.; Shiota, T. Tetrahedron Lett. 1987, 28, 2383–2386.

(3) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127–2129.

(4) Evans, D. A.; Urpí, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. J. Am. Chem. Soc. **1990**, *112*, 8215–8216.

(5) Polniaszek, R. P.; Belmont, S. E. J. Org. Chem. 1991, 56, 4868–4874.